С чем реагирует нитрат серебра и железо

Опубликовано: 16.03.2024

При проведении опыта используем Микролабораторию для химического эксперимента

Оборудование: планшетка, фоновый экран, пробирка (2 шт.), стеклянная палочка, фильтровальная бумага, воронка, спиртовка, зажим пробирочный, спички.

Реактивы: 10% раствор сульфата железа(II) FeSO4, 1% раствор нитрата серебра (I), раствор гексацианоферрата(III) калия K3[Fe(CN)6], раствор роданида калия KSCN (или роданида аммония NH4SCN).

В опыте используют свежеприготовленные растворы сульфата железа(II) и нитрата серебра (I). Причем раствор сульфата железа не желательно подкислять серной кислотой, т.к. в противном случае реакция гидролиза не идет до конца и бурый осадок не образуется, раствор просто приобретает слегка бурую окраску.
Данный опыт можно использовать для создания проблемных ситуаций: первая - протекание окислительно-восстановительной реакции вместо реакции ионного обмена, а вторая - образование бесцветного раствора соли железа (III), который только в результате гидролиза будет приобретать бурую окраску.

Ход работы

1. Устанавливают планшетку на белую сторону фонового экрана.

Устанавливаем планшетку на белую сторону фонового экрана

2. В две ячейки планшетки вносят по 5-6 капель сульфата железа(II).

В две ячейки планшетки вносят по 5-6 капель сульфата железа(II).

3. В одну ячейку добавляют 5-6 капель гексацианоферрата(III) калия. Образуется темно-синий осадок (турнбулева синь). В другую ячейку планшетки добавляют 5-6 капель роданида калия, может появиться небольшое кирпичное окрашивание из-за следов ионов железа(III), если при приготовлении раствора использовали старый реактив.

В одну ячейку добавляют 5-6 капель гексацианоферрата(III) калия. В другую ячейку планшетки добавляют 5-6 капель роданида калия

4. В пробирку наливают 25 капель сульфата железа(II) и приливают к нему раствор нитрата серебра(I) до образования и осаждения мелкодисперстного серебристо-серого осадка серебра.
3FeSO4 + 3AgNO3=Fe2(SO4)3 + 3Ag↓ + Fe(NO3)3

В пробирку наливают 25 капель сульфата железа(II) и приливают к нему раствор нитрата серебра(I)

5. Стеклянной палочкой переносят несколько капель получившегося раствора в планшетку

Стеклянной палочкой переносят несколько капель получившегося раствора в планшетку

6. Добавляют 1 каплю раствор роданида калия KSCN. Наблюдают ярко-красное окрашивание вследствие образования роданида железа (III).Если реакция пройдет до конца, то при проведении аналогичной реакции с гексацианоферратом(III) калия, качественной реакции не наблюдают.

Добавляют 1 каплю раствор роданида калия KSCN.

7. Полученный раствор соли железа (III) отфильтровывают от осадка серебра в пробирку.

Полученный раствор соли железа (III) отфильтровывают от осадка серебра в пробирку.

8. Пробирку вставляют в пробирочный зажим и нагревают на спиртовке.

Пробирку вставляют в пробирочный зажим и нагревают на спиртовке.

9. При нагревании раствор приобретает коричневую окраску, затем она усиливается, а потом выпадает бурый осадок.

При нагревании раствор приобретает коричневую окраску, затем она усиливается, а потом выпадает бурый осадок.

После проведения данного опыта создаются сразу две проблемные ситуации. Первая заключается в том, что наблюдается реакция, которая, по представлениям учеников, протекать не должна. Ведь учащимся известно, что реакция между растворами солей возможна, если в результате взаимодействия образуется новая малорастворимая соль, выпадающая в осадок. В этом опыте в осадок выпадает не соль, а металл. Составляют уравнения окислительно-восстановительных реакций.

Далее обращают внимание на цвет раствора, образовавшегося в результате реакции. По представлениям учащихся, растворы солей железа (III) имеют желто-коричневую окраску, но полученный раствор окраски не имеет. Учащиеся должны сделать вывод о том, что свежеприготовленный раствор соли железа (III) окраски не имеет, цвет обычных растворов обусловлен гидролизом. Опираясь на уравнения реакций гидролиза по отдельным ступеням, учащиеся должны определить, что при нагревании гидролиз значительно усиливается и даже сопровождается выпадением осадка Fe3O3•nH2O.

Оказываем содействие в подготовке технических требований для тендерной документации.
Внимание! Изображение товара может отличаться от полученного Вами товара. Производитель оставляет за собой право изменять комплектацию и технические характеристики товара без предварительного уведомления без ухудшения функциональных и качественных показателей. Информация о товаре носит справочный характер и не является публичной офертой, определяемой Статьей 437 ГК РФ.
Убедительная просьба, при покупке учебного оборудования согласовывать с менеджером важные для Вас характеристики, комплектацию и цену учебного оборудования.

Реакция взаимодействия железа и нитрата серебра.











Уравнение реакции взаимодействия железа и нитрата серебра:

Железо и нитрат серебра (I) взаимодействуют друг с другом.

Реакция железа и нитрата серебра (I) протекает при обычных условиях.

В результате реакции железа и нитрата серебра (I) образуются серебро и нитрат железа (II).

Примечание: © Фото https://www.pexels.com, https://pixabay.com











  • ← Реакция взаимодействия гидроксида натрия, кремния и воды
  • Модель, с большой точностью прогнозирующая океанические явления →

Справочники

Мировая экономика

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (106 195)
  • Экономика Второй индустриализации России (102 022)
  • Программа искусственного интеллекта ЭЛИС (25 861)
  • Метан, получение, свойства, химические реакции (21 721)
  • Этилен (этен), получение, свойства, химические реакции (19 736)
  • Природный газ, свойства, химический состав, добыча и применение (19 055)
  • Крахмал, свойства, получение и применение (17 974)
  • Прямоугольный треугольник, свойства, признаки и формулы (17 072)
  • Мотор-колесо Дуюнова (16 866)
  • Пропилен (пропен), получение, свойства, химические реакции (16 768)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Реакции, взаимодействие железа. Уравнения реакции железа с веществами.

Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие железа с неметаллами. Уравнения реакции:

1. Реакция взаимодействия железа и серы :

Fe + S → FeS (t = 600-950 °C),

Fe + 2S → FeS2 (t серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).

2. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

Реакция взаимодействия железа и красного фосфора происходит с образованием фосфида железа . Также образуются Fe2P, FeP, FeP2.

3. Реакция взаимодействия железа и селена :

Fe + Se → FeSe (t = 600-950 °C).

Реакция взаимодействия железа и селена происходит с образованием селенида железа.

4. Реакция взаимодействия железа и кремния :

2Si + Fe → FeSi2 (t o ).

Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.

5. Реакция взаимодействия железа, кремния и кислорода:

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с образованием ортосиликата железа, во втором – метасиликата железа.

6. Реакция взаимодействия железа и кислорода:

2Fe + O2 → 2FeO (t o ),

Реакция взаимодействия железа и кислорода происходит в первом случае – с образованием оксида железа (II, III), во втором – оксида железа (II), в третьем – оксида железа (III). Первая реакция представляет собой сгорание железа на воздухе . Вторая реакция происходит при продувании воздуха через расплавленный чугун.

7. Реакция взаимодействия железа и углерода :

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

8. Реакция взаимодействия железа и фтора :

Реакция взаимодействия железа и фтора происходит с образованием фторида железа.

9. Реакция взаимодействия железа и хлора:

Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.

10. Реакция взаимодействия железа и брома:

Реакция взаимодействия железа и брома происходит с образованием бромида железа.

11. Реакция взаимодействия железа и йода :

Реакция взаимодействия железа и йода происходит с образованием йодида железа.

12. Реакция взаимодействия железа и бора:

Реакция взаимодействия железа и бора происходит с образованием борида железа.

Реакции, взаимодействие железа с оксидами. Уравнения реакции:

1. Реакция взаимодействия железа и воды:

2. Реакция взаимодействия железа, воды и кислорода:

Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.

3. Реакция взаимодействия железа, воды и пероксида калия:

Реакция взаимодействия железа, воды и пероксида калия происходит с образованием феррата железа и гидроксида калия . Реакция протекает медленно в концентрированном растворе гидроксида калия.

4. Реакция взаимодействия железа и оксида железа (II, III):

Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).

5. Реакция взаимодействия железа и оксида железа (III):

Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).

6. Реакция взаимодействия железа и оксида углерода (II):

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C, р = 1·10 7 -2·10 7 Па).

Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.

7. Реакция взаимодействия железа и оксида серы:

Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа. Реакция медленно протекает при комнатной температуре.

Реакции, взаимодействие железа с солями. Уравнения реакции:

1. Реакция взаимодействия железа и нитрата меди:

Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.

2. Реакция взаимодействия железа и нитрата серебра:

Реакция взаимодействия нитрата серебра и железа происходит с образованием нитрата железа и серебра .

3. Реакция взаимодействия железа и сульфата меди:

Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.

4. Реакция взаимодействия железа и хлорида меди:

Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.

5. Реакция взаимодействия железа и хлорида железа (III):

Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.

Реакции, взаимодействие железа с кислотами. Уравнения реакции:

1. Реакция взаимодействия железа и азотной кислоты:

Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции используется концентрированная азотная кислота.

2. Реакция взаимодействия железа и ортофосфорной кислоты:

Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции используется разбавленный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие железа с основаниями. Уравнения реакции:

1. Реакция взаимодействия железа, гидроксида натрия и воды:

Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.

2. Реакция электролиза железа, водного раствора гидроксида калия:

Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.

Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).

Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.

2. Реакция взаимодействия железа и фтороводорода:

Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции используется разбавленный раствор фтороводорода.

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

vzaimodejstvie-medi-s-kislorodom2

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

2cu-plus-s-ravno-cu2s

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

cu-plus-s-ravno-cus-v-cs2

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

2cu-plus-i2-ravno-2cui

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

cu-plus-hcl-konc-i-cu-plus-hcl-konc-table2

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением: cu-pljus-2h2so4-ravno-cuso4-plus-so2-plus-2h2o

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

vzaimodejstvie-cu-s-oxidami-azota

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

cu-pljus-so2

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

cu-pljus-cuo-ravno-cu2o

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

cu-pljus-fe2o3-ravno-2feo-plus-cuo

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

zn-plus-o2-2

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

zn-plus-cl2-i-zn-plus-s-i-zn-plus-p

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

zn-plus-2naoh-i-zn-plus-baoh2

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Реакции, взаимодействие железа. Уравнения реакции железа с веществами.

Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие железа с неметаллами. Уравнения реакции:

1. Реакция взаимодействия железа и серы :

Fe + S → FeS (t = 600-950 °C),

Fe + 2S → FeS2 (t серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).

2. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

Реакция взаимодействия железа и красного фосфора происходит с образованием фосфида железа . Также образуются Fe2P, FeP, FeP2.

3. Реакция взаимодействия железа и селена :

Fe + Se → FeSe (t = 600-950 °C).

Реакция взаимодействия железа и селена происходит с образованием селенида железа.

4. Реакция взаимодействия железа и кремния :

2Si + Fe → FeSi2 (t o ).

Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.

5. Реакция взаимодействия железа, кремния и кислорода:

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с образованием ортосиликата железа, во втором – метасиликата железа.

6. Реакция взаимодействия железа и кислорода:

2Fe + O2 → 2FeO (t o ),

Реакция взаимодействия железа и кислорода происходит в первом случае – с образованием оксида железа (II, III), во втором – оксида железа (II), в третьем – оксида железа (III). Первая реакция представляет собой сгорание железа на воздухе . Вторая реакция происходит при продувании воздуха через расплавленный чугун.

7. Реакция взаимодействия железа и углерода :

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

8. Реакция взаимодействия железа и фтора :

Реакция взаимодействия железа и фтора происходит с образованием фторида железа.

9. Реакция взаимодействия железа и хлора:

Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.

10. Реакция взаимодействия железа и брома:

Реакция взаимодействия железа и брома происходит с образованием бромида железа.

11. Реакция взаимодействия железа и йода :

Реакция взаимодействия железа и йода происходит с образованием йодида железа.

12. Реакция взаимодействия железа и бора:

Реакция взаимодействия железа и бора происходит с образованием борида железа.

Реакции, взаимодействие железа с оксидами. Уравнения реакции:

1. Реакция взаимодействия железа и воды:

2. Реакция взаимодействия железа, воды и кислорода:

Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.

3. Реакция взаимодействия железа, воды и пероксида калия:

Реакция взаимодействия железа, воды и пероксида калия происходит с образованием феррата железа и гидроксида калия . Реакция протекает медленно в концентрированном растворе гидроксида калия.

4. Реакция взаимодействия железа и оксида железа (II, III):

Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).

5. Реакция взаимодействия железа и оксида железа (III):

Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).

6. Реакция взаимодействия железа и оксида углерода (II):

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C, р = 1·10 7 -2·10 7 Па).

Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.

7. Реакция взаимодействия железа и оксида серы:

Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа. Реакция медленно протекает при комнатной температуре.

Реакции, взаимодействие железа с солями. Уравнения реакции:

1. Реакция взаимодействия железа и нитрата меди:

Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.

2. Реакция взаимодействия железа и нитрата серебра:

Реакция взаимодействия нитрата серебра и железа происходит с образованием нитрата железа и серебра .

3. Реакция взаимодействия железа и сульфата меди:

Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.

4. Реакция взаимодействия железа и хлорида меди:

Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.

5. Реакция взаимодействия железа и хлорида железа (III):

Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.

Реакции, взаимодействие железа с кислотами. Уравнения реакции:

1. Реакция взаимодействия железа и азотной кислоты:

Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции используется концентрированная азотная кислота.

2. Реакция взаимодействия железа и ортофосфорной кислоты:

Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции используется разбавленный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие железа с основаниями. Уравнения реакции:

1. Реакция взаимодействия железа, гидроксида натрия и воды:

Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.

2. Реакция электролиза железа, водного раствора гидроксида калия:

Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.

Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).

Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.

2. Реакция взаимодействия железа и фтороводорода:

Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции используется разбавленный раствор фтороводорода.

Читайте также: