Реагирует ли цинк с нитратом серебра

Опубликовано: 26.03.2024

Реакции, взаимодействие цинка. Уравнения реакции цинка с веществами.











Цинк реагирует, взаимодействует с неметаллами, полуметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие цинка с неметаллами. Уравнения реакции:

Zn + S → ZnS (t > 130 °C).

Реакция взаимодействия цинка и серы происходит с образованием сульфида цинка.

2. Реакция взаимодействия цинка и фосфора:

Zn + 2P → ZnP2 (t = 700-850 °C).

Реакция взаимодействия цинка и фосфора происходит с образованием дифосфида цинка. Реакция протекает в вакууме.

Zn + Se → ZnSe (t = 800-900 °C).

Реакция взаимодействия цинка и селена происходит с образованием селенида цинка.

Реакция взаимодействия цинка и кислорода происходит с образованием оксида цинка . Реакция представляет собой сгорание цинка на воздухе.

Реакция взаимодействия цинка и фтора происходит с образованием фторида цинка.

Реакция взаимодействия цинка и хлора происходит с образованием хлорида цинка. Реакция протекает в воде.

Реакция взаимодействия цинка и брома происходит с образованием бромида цинка. Реакция протекает в воде.

Реакция взаимодействия цинка и йода происходит с образованием йодида цинка. Реакция протекает в воде.

Реакции, взаимодействие цинка с полуметаллами. Уравнения реакции:

Реакция взаимодействия цинка и сурьмы происходит с образованием стибида цинка.

Zn + Te → ZnTe (t = 800-900 °C).

Реакция взаимодействия цинка и теллура происходит с образованием теллурида цинка. Реакция протекает в вакууме.

Реакции, взаимодействие цинка с оксидами. Уравнения реакции:

Реакция взаимодействия цинка и воды происходит с образованием оксида цинка и водорода.

Zn + CO2 → ZnO + CO (t = 800-950 °C).

Реакция взаимодействия цинка и оксида углерода (IV) происходит с образованием оксида цинка и оксида углерода (II).

Реакция взаимодействия цинка и оксида азота (IV) происходит с образованием оксида азота (II) и нитрата цинка.

Реакция взаимодействия цинка и оксида серы происходит с образованием дитионита цинка. Реакция протекает в водном растворе этанола.

Реакции, взаимодействие цинка с солями. Уравнения реакции:

Реакция взаимодействия нитрата серебра и цинка происходит с образованием серебра и нитрата цинка.

Реакция взаимодействия нитрата свинца и цинка происходит с образованием свинца и нитрата цинка.

3. Реакция взаимодействия цинка и сульфата меди :

Реакция взаимодействия сульфата меди и цинка происходит с образованием сульфата цинка и меди.

Реакция взаимодействия хлорида меди и цинка происходит с образованием хлорида цинка и меди.

Реакции, взаимодействие цинка с кислотами. Уравнения реакции:

Реакция взаимодействия цинка и азотной кислоты происходит с образованием нитрата цинка, оксида азота (IV) и воды. В ходе реакции используется горячий концентрированный раствор азотной кислоты.

Реакция взаимодействия цинка и ортофосфорной кислоты происходит с образованием гидроортофосфата цинка и водорода. В ходе первой реакции используется горячий концентрированный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие цинка с основаниями. Уравнения реакции:

Реакция взаимодействия цинка и гидроксида натрия происходит с образованием цинката натрия и водорода.

Реакция взаимодействия цинка, гидроксида натрия и воды происходит с образованием тетрагидроксоцинката натрия и водорода. Реакция протекает в концентрированном растворе гидроксида натрия.

Реакция взаимодействия цинка, гидроксида калия и воды происходит с образованием тетрагидроксоцинката калия и водорода .

Реакция взаимодействия цинка, гидроксида лития и воды происходит с образованием тетрагидроксоцинката лития и водорода . Реакция протекает в горячем концентрированном растворе гидроксида лития.

Реакции, взаимодействие цинка с водородсодержащими соединениями. Уравнения реакции:

Реакция взаимодействия цинка и фтороводорода происходит с образованием фторида цинка и водорода. В ходе реакции используется разбавленный раствор фтороводорода.

H2S + Zn → ZnS + H2 (t = 700-800 °C).

Реакция взаимодействия цинка и сероводорода происходит с образованием сульфида цинка и водорода.

Примечание: © Фото https://www.pexels.com, https://pixabay.com











  • ← Искусственные нейроны
  • Рассчитать объем азота →

Справочники

Мировая экономика

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (106 195)
  • Экономика Второй индустриализации России (102 022)
  • Программа искусственного интеллекта ЭЛИС (25 861)
  • Метан, получение, свойства, химические реакции (21 720)
  • Этилен (этен), получение, свойства, химические реакции (19 733)
  • Природный газ, свойства, химический состав, добыча и применение (19 055)
  • Крахмал, свойства, получение и применение (17 974)
  • Прямоугольный треугольник, свойства, признаки и формулы (17 071)
  • Мотор-колесо Дуюнова (16 866)
  • Пропилен (пропен), получение, свойства, химические реакции (16 768)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Бинарные соединения алюминия

Положение в периодической системе химических элементов

Цинк расположены в побочной подгруппе II группы (или в 12 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение цинка и свойства

Электронная конфигурация цинка в основном состоянии :

+30Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

2s
2p

3s
3p
3d

Характерная степень окисления цинка в соединениях +2.

Физические свойства

Цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (быстро тускнеет на воздухе, покрываясь тонким слоем оксида цинка).


Температура плавления цинка 420°С, температура кипения 906°С, плотность 7,13 г/см 3 .

Нахождение в природе

Среднее содержание цинка в земной коре 8,3·10 -3 мас.%. Основной минерал цинка: сфалерит (цинковая обманка) ZnS..


Цинк играет важную роль в процессах, протекающих в живых организмах.

В природе цинк как самородный металл не встречается.

Способы получения

Цинк получают из сульфидной руды. На первом этапе руду обогащают, повышая концентрацию сульфидов металлов. Сульфид цинка обжигают в печи кипящего слоя:

2ZnS + 3O2 → 2ZnO + 2SO2

Чистый цинк из оксида получают двумя способами.

При пирометаллургическом способе , который использовался издавна, оксид цинка восстанавливают углём или коксом при 1200—1300 °C:

ZnO + С → Zn + CO

Далее цинк очищают от примесей.

В настоящее время основной способ получения цинка — электролитический (гидрометаллургический) . При этом сульфид цинка обрабатывают серной кислотой:

При это получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу.

При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).

Качественные реакции

Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами . При этом образуется белый осадок гидроксида цинка.


Например , хлорид цинка взаимодействует с гидроксидом натрия:

ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl


При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:


Обратите внимание , если мы поместим соль цинка в избыток раствора щелочи, то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс:


Химические свойства

1. Цинк – сильный восстановитель . Цинк – довольно активный металл, но на воздухе он устойчив, так как покрывается тонким слоем оксида, предохраняющим его от дальнейшего окисления. При нагревании цинк реагирует со многими неметаллами .

1.1. Цинк реагируют с галогенами с образованием галогенидов:

Реакция цинка с иодом при добавлении воды:

1.2. Цинк реагирует с серой с образованием сульфидов:

Zn + S → ZnS

1.3. Цинк реагируют с фосфором . При этом образуется бинарное соединение — фосфид:

1.4. С азотом цинк непосредственно не реагирует.

1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.

1.6. Цинк взаимодействует с кислородом с образованием оксида:

2Zn + O2 → 2ZnO

2. Цинк взаимодействует со сложными веществами:

2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:

Zn 0 + H2 + O → Zn +2 O + H2 0

2.2. Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например , цинк реагирует с соляной кислотой :

Zn + 2HCl → ZnCl2 + H2

Демонстрация количества выделения водорода при реакции цинка с кислотой:

Цинк реагирует с разбавленной серной кислотой:

2.3. Цинк реагирует с концентрированной серной кислотой . В зависимости от условий возможно образование различных продуктов. При нагревании гранулированного цинка с концентрированной серной кислотой образуются оксид серы (IV), сульфат цинка и вода:

Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводорода, сульфата цинка и воды:

2.4. Аналогично: при нагревании гранулированного цинка с концентрированной азотной кислотой образуются оксид азота (IV) , нитрат цинка и вода :

При нагревании цинка с очень разбавленной азотной кислотой образуются нитрат аммония , нитрат цинка и вода :

2.5. Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2

Цинк реагирует с расплавом щелочи с образованием цинката и водорода:

В отличие от алюминия, цинк растворяется и в водном растворе аммиака:

2.6. Цинк вытесняет менее активные металлы из оксидов и солей .

Например , цинк вытесняет медь из оксида меди (II):

Zn + CuO → Cu + ZnO

Еще пример : цинк восстанавливает медь из раствора сульфата меди (II):

CuSO4 + Zn = ZnSO4 + Cu

И свинец из раствора нитрата свинца (II):

Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами, соединениями хрома (VI):

Оксид цинка

Способы получения

Оксид цинка можно получить различными методами :

1. Окислением цинка кислородом:

2Zn + O2 → 2ZnO

2. Разложением гидроксида цинка при нагревании:

3. Оксид цинка можно получить разложением нитрата цинка :

Химические свойства

Оксид цинка — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодействии оксида цинка с основными оксидами образуются соли-цинкаты.

Например , оксид цинка взаимодействует с оксидом натрия:

2. Оксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом оксид цинка проявляет кислотные свойства.

Например , оксид цинка взаимодействует с гидроксидом натрия в расплаве с образованием цинката натрия и воды:

Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката:

3. Оксид цинка не взаимодействует с водой.

ZnO + H2O ≠

4. Оксид цинка взаимодействует с кислотными оксидами . При этом образуются соли цинка. В этих реакциях оксид цинка проявляет основные свойства.

Например , оксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:

5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей.

Например , оксид цинка реагирует с соляной кислотой:

ZnO + 2HCl = ZnCl2 + H2O

6. Оксид цинка проявляет слабые окислительные свойства .

Например , оксид цинка при нагревании реагирует с водородом и угарным газом:

ZnO + С(кокс) → Zn + СО

ZnO + СО → Zn + СО2

7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната бария:

Гидроксид цинка

Способы получения

1. Гидроксид цинка можно получить пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить исходное вещество Na2[Zn(OH)4] на составные части: NaOH и Zn(OH)2. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Zn(OH)2 не реагирует с СО2, то мы записываем справа Zn(OH)2 без изменения.

2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка.

Например , хлорид цинка реагирует с недостатком гидроксида калия с образованием гидроксида цинка и хлорида калия:

Химические свойства

1. Гидроксид цинка реагирует с растворимыми кислотами .

Например , гидроксид цинка взаимодействует с азотной кислотой с образованием нитрата цинка:

2. Гидроксид цинка взаимодействует с кислотными оксидами .

Например , гидроксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:

3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом гидроксид цинка проявляет кислотные свойства.

Например , гидроксид цинка взаимодействует с гидроксидом калия в расплаве с образованием цинката калия и воды:

Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката:

4. Г идроксид цинка разлагается при нагревании :

Соли цинка

Нитрат и сульфат цинка

Нитрат цинка при нагревании разлагается на оксид цинка, оксид азота (IV) и кислород:

Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка, сернистый газ и кислород:

Комплексные соли цинка

Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.

Например , тетрагидроксоцинкат натрия разбиваем на гидроксид цинка и гидроксид натрия:

Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы цинка реагируют с кислотными оксидами .

Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.

Например , с соляной кислотой:

Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:

Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:

Гидролиз солей цинка

Растворимые соли цинка и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Zn 2+ + H2O = ZnOH + + H +

II ступень: ZnOH + + H2O = Zn(OH )2 + H +

Более подробно про гидролиз можно прочитать в соответствующей статье.

Цинкаты

Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:

Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.

Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.

Na2ZnO2 разбиваем на Na2O и ZnO

Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка :

Под действием избытка воды цинкаты переходят в комплексные соли:

Сульфид цинка

Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):

ZnS + 2HCl → ZnCl2 + H2S

Под действием азотной кислоты сульфид цинка окисляется до сульфата:

(в продуктах также можно записать нитрат цинка и серную кислоту).

Концентрированная серная кислота также окисляет сульфид цинка:

При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:

Z nS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr

Упражнения типа «мысленный эксперимент» по химии цинка (тренажер задания 32 ЕГЭ по химии)

  1. Оксид цинка растворили в растворе хлороводородной кислоты и раствор нейтрализовали, добавляя едкий натр. Выделившееся студенистое вещество белого цвета отделили и обработали избытком раствора щелочи, при этом осадок полностью растворился. нейтрализация полученного раствора кислотой, например, азотной, приводит к повторному образованию студенистого осадка. Напишите уравнения описанных реакций.

  1. Цинк растворили в очень разбавленной азотной кислоте и в полученный раствор добавили избыток щелочи, получив прозрачный раствор. Напишите уравнения описанных реакций.

  1. Соль, полученную при взаимодействии оксида цинка с серной кислотой, прокалили при температуре 800°С. Твердый продукт реакции обработали концентрированным раствором щелочи, и через полученный раствор пропустили углекислый газ. Напишите уравнения описанных реакций.

  1. Нитрат цинка прокалили, продукт реакции при нагревании обработали раствором едкого натра. Через образовавшийся раствор пропустили углекислый газ до прекращения выделения осадка, после чего обработали избытком концентрированного нашатырного спирта, при этом осадок растворился. Напишите уравнения описанных реакций.

  1. Цинк растворили в очень разбавленной азотной кислоте, полученный раствор осторожно выпарили и остаток прокалили. Продукты реакции смешали с коксом и нагрели. Напишите уравнения описанных реакций.

  1. Несколько гранул цинка растворили при нагревании в растворе едкого натра. В полученный раствор небольшими порциями добавляли азотную кислоту до образования осадка. Осадок отделили, растворили в разбавленной азотной кислоте, раствор осторожно выпарили и остаток прокалили. Напишите уравнения описанных реакций.

  1. В концентрированную серную кислоту добавили металлический цинк. образовавшуюся соль выделили, растворили в воде и в раствор добавили нитрат бария. После отделения осадка в раствор внесли магниевую стружку, раствор профильтровали, фильтрат выпарили и прокалили. Напишите уравнения описанных реакций.

  1. Сульфид цинка подвергли обжигу. Полученное твердое вещество полностью прореагировало с раствором гидроксида калия. Через полученный раствор пропустили углекислый газ до выпадения осадка. Осадок растворили в соляной кислоте. Напишите уравнения описанных реакций.

  1. Некоторое количество сульфида цинка разделили на две части. Одну из них обработали соляной кислотой, а другую подвергли обжигу на воздухе. При взаимодействии выделившихся газов образовалось простое вещество. Это вещество нагрели с концентрированной азотной кислотой, причем выделился бурый газ. Напишите уравнения описанных реакций.

  1. Цинк растворили в растворе гидроксида калия. Выделившийся газ прореагировал с литием, а к полученному раствору по каплям добавили соляную кислоту до прекращения выпадения осадка. Его отфильтровали и прокалили. Напишите уравнения описанных реакций.

Марганец

Содержится в количестве 0,03% по массе в земной коре. Наряду с железом и его сплавами относится к черным металлам.

Оксид меди II

Для соединений марганца характерны степени окисления +2, +3, +4, +6 +7. В соединения +2 и +3 марганец проявляет основные свойства, +4 - амфотерные, +6, +7 - кислотные.

Степени окисления марганца и его свойства

Наиболее известными минералами, в которых содержится марганец, являются:

  • MnO2 - пиролюзит
  • MnO(OH) - бурая марганцевая руда, манганит
  • 3Mn2O3*MnSiO3 - браунит

Природные соединения марганца

Получают марганец алюминотермией, восстановлением коксом, электролизом.

MnO2 + C = (t) Mn + CO

    Реакции с неметаллами

На воздухе марганец вступает во взаимодействие с кислородом, пассивируется: на поверхности металла образуется оксидная пленка.

При нагревании марганец реагирует с азотом, углеродом, кремнием, бором и фосфором.

Нитрид марганца

При нагревании марганец вытесняет водород из воды.

Реакции с кислотами

Марганец стоит в ряду напряжений до водорода и способен вытеснить его из кислот.

Под воздействием кислот, которые обладают окислительными свойствами, марганец окисляется.

Реакция марганца с азотной кислотой

Соединения марганца II

Для соединений марганца II характерны основные свойства. Оксид марганца II может быть получен разложением карбоната марганца, либо восстановлением оксида марганца IV до оксида марганца II.

При растворении (и нагревании!) марганца в воде образуется гидроксид марганца II.

Соединения марганца II на воздухе неустойчивы, Mn(OH)2 быстро буреет, превращаясь в оксид-гидроксид марганца IV.

Оксид и гидроксид марганца II проявляют основные свойства. При реакции с кислотами дает соответствующие соли.

Гидроксид марганца II

Соли марганца II получается при его растворении в разбавленных кислотах. Эти соли способны вступать в реакции с другими солями, кислотами, если выпадает осадок, выделяется газ или образуется слабый электролит.

При действии сильных окислителей ион Mn 2+ способен переходить в ион Mn 7+

Соединения марганца IV проявляют амфотерный характер. Оксид марганца IV можно получить разложением нитрата марганца II.

Нитрат марганца II

В реакциях с щелочами марганец переходит в СО +6, в кислой среде - принимает СО +2.

Оксид марганца IV

Соединения марганца VI - MnO3, H2MnO4 - неустойчивы, в свободном виде не получены. Обладают кислотными свойствами. Наиболее устойчивые соли - манганаты, окрашивающие раствор в зеленый цвет.

Манганаты получают в ходе разложения перманганатов, а также реакциями в щелочной среде.

Манганаты образуются в щелочной среде

В водной среде манганаты разлагаются на с.о. +7 и +4. Манганаты окисляют хлором.

Соединения марганца VII - неустойчивый Mn2O7, и относительно устойчивая в разбавленных растворах HMnO4 - проявляют кислотные свойства. Соли марганцовой кислоты - перманганаты.

В различных средах - кислотной, нейтральной и щелочной - марганец принимает различные степени окисления. Внимательно изучите таблицу ниже.

Марганец в различных средах

Оксид марганца VII получают в реакции перманганата с сильными кислотами.

При растворении оксида марганца VII (кислотного оксида) в щелочи образуются соли марганцовой кислоты - перманганаты.

Марганцовая кислота получается в реакциях сильных окислителей с солями марганца II.

В растворах с концентрацией марганцовой кислоты более 20% происходит ее разложение.

При нагревании перманганата калия (в быту - марганцовка) разлагается с образованием бурого MnO2, выделением кислорода.

Перманганат калия - марганцовка

При стоянии в растворе постепенно разлагается водой.

В кислой среде марганец принимает наиболее устойчивую (для кислой среды) - Mn 2+ , в щелочной - Mn 6+ .

Название цинка, вероятно, связано формой его кристаллитов: в переводе с немецкого Zinke - зубец. С древнейших времен известен сплав меди с цинком - латунь.

Цинк

Для цинка характерна постоянная степень окисления +2.

Степень окисления цинка и его свойства

Наиболее известные минералы, в которых содержится цинк:

  • ZnS - цинковая обманка, сфалерит
  • ZnO - цинкит
  • ZnCO3 - симсонит, цинковый шпат
  • 2ZnO*SiO2*H2O - гемиморфит

Природные соединения цинка

Пирометаллургический метод получения цинка заключается в обжиге цинковой обманки, и последующем восстановлении оксида цинка различными восстановителями: чаще всего C, также возможно CO и H2.

ZnO + C = (t) Zn + CO

ZnO + CO = (t) Zn + CO2

Сульфид цинка

Гидрометаллургический метод получения основывается на электролизе сульфата цинка.

    Реакции с неметаллами (и аммиаком :)

На воздухе цинк покрывается оксидной пленкой. При нагревании цинк реагирует с галогенами, фосфором, серой, селеном.

Оксид цинка

Для цинка не характерны реакции с водородом, бором, кремнием, азотом, углеродом. Нитрид цинка можно получить в ходе реакции цинка с аммиаком.

Реакции с кислотами

Хлорид цинка

Цинк способен проявлять амфотерные (двойственные) свойства: реагирует как с кислотами, так и с основаниями. При добавлении цинка в раствор щелочи выделяется водород.

Zn + H2O + NaOH = Na2[Zn(OH)4] + H2↑ (тетрагидроксоцинкат натрия)

Соединения цинка II

Эти соединения обладают амфотерными свойствами. Оксид цинка II можно получить в ходе реакции горения цинка или при разложении нитрата цинка.

Оксид цинка II проявляет амфотерные свойства, реагирует как с кислотами, так и с щелочами.

ZnO + H2O + 2NaOH = Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)

Комплексные соли образуются в растворе, при прокаливании они не образуются.

ZnO + 2NaOH = (t) H2O + Na2ZnO2 (цинкат натрия)

Оксид цинка II может быть восстановлен до чистого цинка различными восстановителями.

ZnO + C = (t) Zn + CO

ZnO + CO = (t) Zn + CO2

Гидроксид цинка II получается в ходе реакций между растворимыми солями цинка и щелочами.

Гидроксид цинка

Гидроксид цинка II обладает амфотерными свойствами, реагирует как с кислотами, так и с основаниями.

При прокаливании комплексные соли распадаются, вода испаряется.

Серебро

Драгоценный металл, известный человеку с древнейших времен. Встречаемся в самородном виде. Будучи благородным металлом, серебро обладает низкой реакционной способностью.

Серебро

    Реакции с неметаллами

Серебро не окисляется кислородом даже при высокой температуре. Галогены легко окисляют серебро до соответствующих галогенидов. При нагревании с серой получается сульфид серебра.

Реакции с кислотами

Серебро не растворяется в соляной и разбавленной серной кислотах, однако способно реагировать с концентрированными кислотами.

Потемнение серебряных изделий обусловлено реакцией серебра с сероводородом в присутствии кислорода.

Потемнение серебра на воздухе

С органическими веществами

В дальнейшем, при изучении органической химии, вы не раз столкнетесь с соединением серебра - аммиачным раствором оксида серебра.

Будет полезно, если вы уже сейчас познакомитесь с его формулой на примере реакции окисления уксусного альдегида до уксусной кислоты.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Марганец, цинк и серебро

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

vzaimodejstvie-medi-s-kislorodom2

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

2cu-plus-s-ravno-cu2s

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

cu-plus-s-ravno-cus-v-cs2

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

2cu-plus-i2-ravno-2cui

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

cu-plus-hcl-konc-i-cu-plus-hcl-konc-table2

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением: cu-pljus-2h2so4-ravno-cuso4-plus-so2-plus-2h2o

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

vzaimodejstvie-cu-s-oxidami-azota

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

cu-pljus-so2

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

cu-pljus-cuo-ravno-cu2o

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

cu-pljus-fe2o3-ravno-2feo-plus-cuo

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

zn-plus-o2-2

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

zn-plus-cl2-i-zn-plus-s-i-zn-plus-p

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

zn-plus-2naoh-i-zn-plus-baoh2

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Цинк реагирует, взаимодействует с неметаллами, полуметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие цинка с неметаллами. Уравнения реакции:

1. Реакция взаимодействия цинка и серы:

Zn + S → ZnS (t > 130 °C).

Реакция взаимодействия цинка и серы происходит с образованием сульфида цинка.

2. Реакция взаимодействия цинка и фосфора:

Zn + 2P → ZnP2 (t = 700-850 °C).

Реакция взаимодействия цинка и фосфора происходит с образованием дифосфида цинка. Реакция протекает в вакууме.

3. Реакция взаимодействия цинка и селена:

Zn + Se → ZnSe (t = 800-900 °C).

Реакция взаимодействия цинка и селена происходит с образованием селенида цинка.

4. Реакция взаимодействия цинка и кислорода:

Реакция взаимодействия цинка и кислорода происходит с образованием оксида цинка. Реакция представляет собой сгорание цинка на воздухе.

5. Реакция взаимодействия цинка и фтора:

Реакция взаимодействия цинка и фтора происходит с образованием фторида цинка.

6. Реакция взаимодействия цинка и хлора:

Реакция взаимодействия цинка и хлора происходит с образованием хлорида цинка. Реакция протекает в воде.

7. Реакция взаимодействия цинка и брома:

Реакция взаимодействия цинка и брома происходит с образованием бромида цинка. Реакция протекает в воде.

8. Реакция взаимодействия цинка и йода:

Реакция взаимодействия цинка и йода происходит с образованием йодида цинка. Реакция протекает в воде.

Реакции, взаимодействие цинка с полуметаллами. Уравнения реакции:

1. Реакция взаимодействия цинка и сурьмы:

Реакция взаимодействия цинка и сурьмы происходит с образованием стибида цинка.

2. Реакция взаимодействия цинка и теллура:

Zn + Te → ZnTe (t = 800-900 °C).

Реакция взаимодействия цинка и теллура происходит с образованием теллурида цинка. Реакция протекает в вакууме.

Реакции, взаимодействие цинка с оксидами. Уравнения реакции:

1. Реакция взаимодействия цинка и воды:

Реакция взаимодействия цинка и воды происходит с образованием оксида цинка и водорода.

2. Реакция взаимодействия цинка и оксида углерода (IV):

Zn + CO2 → ZnO + CO (t = 800-950 °C).

Реакция взаимодействия цинка и оксида углерода (IV) происходит с образованием оксида цинка и оксида углерода (II).

3. Реакция взаимодействия цинка и оксида азота:

Реакция взаимодействия цинка и оксида азота происходит с образованием оксида азота и нитрата цинка.

4. Реакция взаимодействия цинка и оксида серы:

Реакция взаимодействия цинка и оксида серы происходит с образованием дитионита цинка. Реакция протекает в водном растворе этанола.

Реакции, взаимодействие цинка с солями. Уравнения реакции:

1. Реакция взаимодействия цинка и нитрата серебра:

Реакция взаимодействия нитрата серебра и цинка происходит с образованием серебра и нитрата цинка.

2. Реакция взаимодействия цинка и нитрата свинца:

Реакция взаимодействия нитрата свинца и цинка происходит с образованием свинца и нитрата цинка.

3. Реакция взаимодействия цинка и сульфата меди:

Реакция взаимодействия сульфата меди и цинка происходит с образованием сульфата цинка и меди.

4. Реакция взаимодействия цинка и хлорида меди:

Реакция взаимодействия хлорида меди и цинка происходит с образованием хлорида цинка и меди.

Реакции, взаимодействие цинка с кислотами. Уравнения реакции:

1. Реакция взаимодействия цинка и азотной кислоты:

Реакция взаимодействия цинка и азотной кислоты происходит с образованием нитрата цинка, оксида азота и воды. В ходе первой реакции используется горячий концентрированный раствор азотной кислоты.

2. Реакция взаимодействия цинка и ортофосфорной кислоты:

Реакция взаимодействия цинка и ортофосфорной кислоты происходит с образованием гидроортофосфата цинка и водорода. В ходе первой реакции используется горячий концентрированный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие цинка с основаниями. Уравнения реакции:

1. Реакция взаимодействия цинка и гидроксида натрия:

Реакция взаимодействия цинка и гидроксида натрия происходит с образованием цинката натрия и водорода.

2. Реакция взаимодействия цинка, гидроксида натрия и воды:

Реакция взаимодействия цинка, гидроксида натрия и воды происходит с образованием тетрагидроксоцинката натрия и водорода. Реакция протекает в концентрированном растворе гидроксида натрия.

3. Реакция взаимодействия цинка, гидроксида калия и воды:

Реакция взаимодействия цинка, гидроксида калия и воды происходит с образованием тетрагидроксоцинката калия и водорода.

4. Реакция взаимодействия цинка, гидроксида лития и воды:

Реакция взаимодействия цинка, гидроксида лития и воды происходит с образованием тетрагидроксоцинката лития и водорода. Реакция протекает в горячем концентрированном растворе гидроксида лития.

Реакции, взаимодействие цинка с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия цинка и фтороводорода:

Реакция взаимодействия цинка и фтороводорода происходит с образованием фторида цинка и водорода. В ходе реакции используется разбавленный раствор фтороводорода.

2. Реакция взаимодействия цинка и сероводорода:

H2S + Zn → ZnS + H2 (t = 700-800 °C).

Реакция взаимодействия цинка и сероводорода происходит с образованием сульфида цинка и водорода.

Читайте также: