Как меняется внутренний диаметр металлического кольца при нагревании
Опубликовано: 26.09.2023
В узлах, состоящих из деталей, имеющих различную рабочую температуру или изготовленных из материалов с разными коэффициентами линейного расширения, тепловые деформации могут существенно влиять на взаимное расположение деталей.
Осевые зазоры. При нагреве в соединениях возникают термические зазоры или натяги , которые необходимо учитывать при назначении сборочных (холодных) зазоров.
Примером может служить конструкция фиксирующего подшипника скольжения (рис. 250, а).
Пусть вал изготовлен из стали с коэффициентом линейного расширения α1, а корпус подшипника — из сплава с α2. Рабочие температуры соответственно равны t1 и t2.
Торцовый холодный зазор Δ = Lв + Lп, где Lв и Lп — соответственно длины шейки вала и подшипника.
При нагреве до рабочей температуры t1 длина шейки вала
где t0 — температура сборки.
Торцовый зазор в рабочем состоянии
Так как отношение Lп/Lв весьма близко к единице, то можно принять Δ' = Δ + Δt, где Δt — термическое изменение зазора:
В зависимости от соотношения величин α1, α2 и t1, t2 первоначальный зазор может увеличиться или уменьшиться. Опасен последний случай, так как вал может оказаться защемленным по торцам.
Пусть корпус подшипника изготовлен из алюминиевого сплава с α2 = 13·10 –6 1/°С, а вал из стали с α1 = 11·10 –6 1/°С; рабочая температура корпуса 100°С, а вала 50°С, длина шейки вала 100 мм, температура сборки 20°С и первоначальный холодный зазор 0,05 мм. Термическое изменение зазора по уравнению (115) Δt = 100[11·10 –6 (50–20)–23·10 –6 (100–20)] = 100(–0,0015) = –0,15 мм. Горячий зазор Δ' = Δ + Δt = 0,05–0,15 = –0,1 мм.
Таким образом, в соединении возникает натяг 0,1 мм; вал будет защемлен в подшипнике. Если в рабочем состоянии должен быть обеспечен минимальный зазор, допустим 0,05 мм, то первоначальный холодный зазор должен быть равен 0,05 + 0,15 = 0,2 мм.
Выбор правильных торцовых зазоров имеет особое значение для многоопорных валов с подшипниками, находящимися на большом расстоянии один от другого (рис. 250, б).
Пусть передний подшипник А является фиксирующим. При нагреве картер удлиняется в направлении, указанном стрелкой. Но избежание защемления нала необходимо между щеками вала и торцами соответствующих подшипников предусмотреть зазоры Δ1, Δ2 и Δ3, пропорциональные расстояниям L1, L2 и L3 этих подшипников от базы. Сохраняя численные значения α1, α2, t0, t1, и t2 предыдущего примера и полагая L1 = 300, L2 = 500 и L3 = 700 мм, получаем следующее термическое изменение зазоров:
При назначении конструктивных зазоров к этим значениям следует прибавить первоначальные холодные зазоры, которые устанавливают с помощью размерного анализа по допускам на изготовление.
Расположение фиксирующих баз. Фиксирующие базы следует выбирать с таким расчетом, чтобы при всех возможных температурных изменениях размеров системы точность расположения деталей не нарушалась или нарушалась бы в наименьшей мере.
В узле конической передачи, установленной в корпусе из легкого сплава (рис. 251, а), фиксирующий подшипник 1 расположен на значительном расстоянии L от центра зацепления зубчатых колес. Удлинение корпуса при нагреве вызывает смещение малого колеса передачи в направлении, указанном стрелкой. Большое колесо перемещается в том же направлении, но на меньшую величину (вследствие меньшего значения коэффициента линейного расширения стального вала). В результате зазор в зацеплении уменьшается. При известных соотношениях зубчатые колеса могут начать работать враспор.
В правильной конструкции (рис. 251, б) фиксирующим является задний подшипник 2, расположенный на сравнительно малом расстоянии l от центра зацепления. Смещения колес относительно друг друга при нагреве здесь гораздо меньше; кроме того, зазор в зацеплении с нагревом увеличивается, а не уменьшается, как в предыдущем случае.
Обеспечение свободы температурным перемещениям. Следует избегать осевой фиксации деталей в двух точках. При наличии температурных деформаций в случае такой фиксации могут появиться термические напряжения, вызванные торможением смежности.
Примером ошибочной установки является фиксация вала в двух подшипниках качения одновременно (рис. 252, а). Если корпус подшипников выполнен из материала с иным коэффициентом линейного расширения, чем вал, а также если вал и корпус имеют различные рабочие температуры, то в узле возникает зазор или натяг. Последний может привести к защемлению подшипников. Неизбежные погрешности выполнения осевых размеров соединения. в свою очередь, могут вызвать появление зазоров или натягов.
Вал следует фиксировать в одном подшипнике (рис. 252, б). Второй подшипник должен быть плавающим , т. е. иметь свободу перемещения в осевом направлении.
Другой пример представлен на рис. 253, а (гильза цилиндра двигателя внутреннего сгорания, непосредственно охлаждаемая водой). Фиксация гильзы в двух точках — верхним буртиком и уплотняющим буртиком ошибочна. При нагреве гильзы возникают термические силы, сжимающие гильзу и растягивающие рубашку. В правильной конструкции (б) гильза зафиксирована только верхним буртиком. Уплотнение выполнено скользящим; гильза имеет возможность свободно перемещаться относительно рубашки.
Следует обеспечивать свободу перемещения крепежных лап машины и агрегатов, нагревающихся при работе. Одну из лап (или ряд лап, расположенных в линию) закрепляют жестко; остальным придают свободу перемещения.
На рис. 254 приведена типовая конструкция лапы крепления корпуса турбины к фундаменту (направление термического расширения корпуса показано стрелкой). Лапу крепят фундаментным болтом, пропущенным через продолговатое отверстие. Между шайбой болта и торцом лапы оставляют зазор е = 0,05—0,1 мм.
В соединениях трубопроводов, несущих горячие жидкости или газы, необходимо предусматривать компенсаторы тепловых расширений, предотвращающие возникновение термических сил и деформацию трубопроводов.
Компенсаторы типа «лира» (рис. 255, 1—3) имеют большие размеры. Более компактны линзовые (4—9) и особенно сильфонные компенсаторы (10—15).
Изменение расположения деталей при нагреве. При проектировании соединений, работающих при повышенных температурах, обязателен тепловой расчет, имеющий целью определить изменение размеров и относительного расположения деталей при нагреве.
В качестве примера рассмотрим посадку в седле выпускного клапана двигателя внутреннего сгорания (рис. 256, а). При нагреве диаметр головки клапана возрастает на величину
а диаметр седла клапана на
где d0 — диаметр головки клапана; αk и αс — соответственно коэффициенты линейного расширения материалов клапана и седла; tk и tс — соответственно рабочие температуры головки клапана и седла; t0 — температура сборки.
Так как рабочая температура головки клапана значительно выше температуры седла, то клапан при нагреве выдвигается из седла (рис. 256, б) на величину
где α — центральный угол фаски.
Приняв α = 90°, получаем с учетом формул (116) и (117)
В высоконагруженных двигателях выпускные клапаны и седла делают из хромоникелевых сталей аустенитного класса, коэффициент линейного расширения которых при 600—800°С равен α = (18—20)10 –6 1/°С. Принимая рабочую температуру головки tk = 700°С, седла tс = 300°С, температуру сборки t0 = 20°С и полагая d0 = 60 мм, получаем m = 0,5·60·20·10 –6 (680–280) = 0,24 мм.
Для обеспечения правильной посадки клапана в седло необходимо увеличить ширину фаски. уменьшив малый диаметр d головки на величину 2m ≈ 0,5 мм (рис. 256, в).
Рассмотрим влияние тепловых деформаций на геометрию узла привода клапана. В простейшей схеме (рис. 257) клапан приводится в действие кулачковым валиком, установленным на головке двигателя (верхнее распределение) и воздействующим непосредственно на тарелку клапана.
Зазор между тыльной поверхностью кулачка и тарелкой клапана в холодном состоянии
В горячем состоянии
где αг, αв и αк — коэффициенты линейного расширения материалов соответственно головки двигателя, кулачкового валика и клапана; tг, tв и tк — соответственные средние температуры; m — перемещение клапана в седле в результате расширения головки клапана [см. формулу (118)].
Пусть αг = 11·10 –6 (чугун); αв = 11·10 –6 (конструкционная сталь); αк = 20·10 –6 1/°С; tг = 100°С, tв = 50°С,tк = 450°С; Н = 150 мм; R = 20 мм; l = 130 мм и m = 0,24 мм.
Изменение зазора согласно уравнениям (119) и (120)
Во избежание нарушения фаз газораспределения в пусковой период холодный зазор в рассматриваемом случае нужно сделать равным е" = 0,7 + е0, где е0 — гарантированный зазор.
В других конструкциях клапанного привода, например, при нижнем клапанном распределении или при передаче клапану движения через толкатели, тяги, рычаги или коромысла, изменении зазора могут быть еще больше. Их можно определить с помощью аналогичной методики.
В новейших конструкциях вводят автоматические компенсирующие устройства, позволяющие поддерживать зазор в клапанном распределении приблизительно постоянным независимо от теплового состояния двигателя.
Корректировка формы деталей. В случаях, когда неравномерный нагрев искажает форму деталей, исходную форму корректируют с таким расчетом, чтобы при нагреве деталь принимала необходимую по условиям работы конфигурацию.
В поршнях двигателей внутреннего сгорания температура максимальна у днища (рис. 258, а) и падает по направлению к юбке вследствие отвода теплоты поршневыми кольцами в стенки цилиндра и охлаждающего действия масла, забрасываемого из картера на внутренние стенки поршня. При нагреве поршень принимает приблизительно коническую форму. Во избежание заедания верхнего пояса в цилиндре поршню заранее придают обратную коническую, суживающуюся к днищу форму (рис. 258, б).
Зазор между поршнем и стенками цилиндра, а также степень необходимого сужения верхнего пояса поршня можно определить из следующих соотношений.
Диаметральный зазор между поршнем и стенками цилиндра в холодном состоянии Δхол = D–d, где D и d — номинальные диаметры соответственно цилиндра и поршня. Зазор в рабочем состоянии
где αп и αц — коэффициенты линейного расширения материалов соответственно поршня и цилиндра; tп и tц — средние температуры соответственно поршня и цилиндра.
Пусть диаметр цилиндра D = 100 мм, αп = 23·10 –6 1/°С (алюминиевый сплав), температура стенок цилиндра tц = 80°С (двигатель водяного охлаждения), температура верхнего пояса поршня 300°С, нижнего 150°С.
Для того чтобы поршень при нагреве приобрел цилиндрическую форму, необходимо, чтобы в холодном состоянии диаметр верхнего пояса был меньше диаметра нижнего пояса на величину
Изменение диаметрального зазора между цилиндром и нижним поясом поршня при нагреве согласно формуле (121) Δхол – Δгор = 100[23·10 –6 (150–20) – 11·10 –6 (80–10)] = 0,23 мм.
Пусть минимальный зазор между цилиндром и поршнем в горячем состоянии должен быть равен Δгор = 0,4мм. Тогда согласно предыдущему уравнению холодный зазор в нижнем поясе Δхол = Δгор + 0,23 = 0,4 + 0,23 = 0,63 мм, а в верхнем поясе Δхол = 0,63 + Δd = 0,63 + 0,345 ≈ 1 мм.
Определим теперь конструктивный зазор δ между тыльной поверхностью поршневых колец и внутренней стенкой поршневых канавок (рис. 258, в).
При нагреве поршня до рабочей температуры диаметр d0 внутренней поверхности поршневой канавки возрастает на величину
а диаметр цилиндра на величину
Если пренебречь изменением ширины кольца при нагреве, то изменение диаметрального зазора между тыльной поверхностью кольца и внутренней поверхностью канавки в верхнем поясе поршня
Принимая d0/D = 0,85 и подставляя численные значения, получаем Δδ = 100[0,85·23·10 –6 (300–20)–11·10 –6 (80–20)] = 0,48 мм
Пусть зазор, необходимый для нормального функционирования кольца в рабочем состоянии, равен 1 мм. Тогда конструктивный холодный зазор должен быть равен 1,48 мм.
Другой пример корректирования формы — придание конусности штокам выпускных клапанов внутреннего сгорания (рис. 259, а). Так как рабочая температура верхнего конца штока ниже температуры у шейки (на участке перехода штока в головку), то диаметр верхнего конца штока должен быть (из условия постоянства зазора по длине направляющей) больше диаметра штока у шейки на величину
где d — номинальный диаметр штока; αк — коэффициент линейного расширения материала клапана; Δt — разность температур шейки и верхнего конца штока.
Для клапана из аустенитной стали (αк = 20·10 –6 1/°С) при диаметре штока d = 12 мм и Δt = 200°С δ = 12·20·10 –6 ·200 ≈ 0,05 мм.
Корректировку можно также осуществить, сделав отверстие направляющей клапана конически расширяющимся по направлению к головке клапана (рис. 259, б).
И тот, и другой способы облегчают самоустановку клапана в седле.
6. КАК И ПОЧЕМУ ВОЗНИКАЮТ ВНУТРЕННИЕ НАПРЯЖЕНИЯ ПРИ ЗАКАЛКЕ
При закалке возникают внутренние напряжения, которые по величине могут быть настолько большими, что это приводит к трещинам и разрушению стали без всякого дополнительного воздействия. Коробление деталей — это также результат воздействия внутренних напряжений. Различают три рода внутренних напряжений.
Напряжения 1-го рода.
Единственная причина возникновения таких напряжений — неравномерность охлаждения деталей при закалке. Как мы уже видели, поверхностные слои металла охлаждаются быстрее, внутренние — медленнее; тонкие части детали охлаждаются быстрее, массивные — медленнее. Почему же это приводит к внутренним напряжениям? Представим себе кольцо, в которое плотно вставлен стержень (рис. 20). Поместим такой стержень с кольцом в печь и разогреем до закалочной температуры. Теперь выгрузим их из печи и начнем холодным водяным душем поливать кольцо. При понижении температуры объем тела, как известно, уменьшается (тело сжимается). Следовательно, и кольцо при охлаждении должно уменьшиться по объему, а значит и по диаметру. Но стержень препятствует этому, так как температура его почти не изменилась, а значит и диаметр остался прежним. В этих условиях кольцо начинает давить на стержень, сжимая его со всех сторон. Поэтому в стержне и возникают сжимающие напряжения. Кольцо же при этом может даже разорваться. Нечто подобное может произойти при насаживании горячей обечайки на бочку. Таким образом, в кольце возникают растягивающие напряжения.
^Аналогичная картина получается при закалке сплошной детали цилиндрической формы (рис. 21). Наружная поверхность ее в виде кольцевого слоя охлаждается
быстро и уменьшается в объеме. Внутренняя же зона охлаждается замедленно и потому препятствует сжатию наружного кольцевого слоя. В результате внутренняя зона металла окажется сжатой, а наружная — растянутой. В последующий период внутренняя зона, охлаждаясь, уменьшится в объеме и потянет к центру наружный кольцевой слой, стремясь уменьшить его диаметр. Но металл снаружи уже остыл и потому утратил пластичность. Теперь наружная зона играет роль жесткого кольца, которое уже не может уменьшиться по диаметру. Поэтому в заключительный период охлаждения в наружных слоях металла возникнут сжимающие напряжения. Внутренняя же зона металла, будучи связана с наружными слоями, не сможет уменьшиться в объеме, хотя и будет стремиться к этому. В результате в ней возникнут растягивающие внутренние напряжения. Растягивающие напряжения являются более опасными, чем сжимающие. При закалке массивных деталей, когда различие в температуре внутренних и наружных слоев достигает значительной величины, такие напряжения могут вызвать трещины или даже привести к полному разрушению металла, как это, например, бывает при закалке молотовых штампов.
Внутренние напряжения 1-го рода, как теперь уже ясно, вызываются объемными изменениями металла при понижении или повышении температуры, и потому их называют термическими напряжениями.
Напряжения 2-го рода.
Такие напряжения вызываются структурными изменениями при закалке. Как уже указывалось, различные структуры стали имеют различный удельный объем: мартенсит — максимальный, аустенит — минимальный, перлит — средний между ними.
Представим себе цилиндрическую деталь из углеродистой стали, которая прокаливается не насквозь. Тогда после закалки в наружном кольцевом слое такой детали будет мартенситная структура, а в центральной части — перлитная. При образовании мартенсита объем стали возрастает, и поэтому наружное мартенситное кольцо будет стремиться увеличиться в диаметре. Но этому препятствует центральная зона, стремясь стянуть кольцо к центру. В результате в наружном мартенсит-ном слое металла возникнут сжимающие напряжения, а в центральной зоне, наоборот,— растягивающие.
Эти напряжения также связаны с изменениями объема металла, но такие изменения в данном случае вызваны структурными превращениями. Поэтому и напряжения называются структурными.
Таким образом, окончательная картина распределения внутренних напряжений весьма сложная и зависит от соотношения термических и структурных напряжений в данном участке детали.
Напряжения 3-го рода.
Это напряжения, возникающие в атомной решетке. Мы уже знаем, что в атомной решетке по различным причинам могут возникать искажения с нарушением правильного порядка расположения атомов, например дислокации. Дислокацию можно рассматривать как лишнюю плоскость, вклинившуюся между двумя соседними плоскостями и как бы распирающую атомную решетку в этом месте. Атомы, расположенные в прилегающих к дислокации плоскостях, сдвигаются из своего нормального (равновесного) положения в данной решетке. Стремление этих атомов к упорядоченному расположению и вызывает появление внутренних межатомных напряжений. Мартенситная структура, возникающая в стали после закалки, характеризуется большим числом дислокаций. Кроме того, мартенсит имеет атомную решетку, в которой между атомами железа расположены атомы углерода (см. рис. 9). Это приводит к распиранию решетки, к ее искажению, а следовательно, также вызывает внутренние межатомные напряжения.
Подводя итог всему сказанному, следует ответить на вопрос — всегда ли внутренние напряжения являются опасными и нежелательными? Нет, в ряде случаев они являются полезными и способствуют повышению прочности деталей. Такое благоприятное действие оказывают, например, сжимающие напряжения на поверхности деталей. Поясним это. Представим себе динамометр (силоизмеритель), который растягивают два человека в разные стороны с помощью тросов (рис. 22). Предположим, что стрелка динамометра показывает при этом растягивающее усилие, равное 50 кгс. Если теперь еще два человека возьмутся за тросы и будут их тянуть к динамометру, прикладывая усилие 30 кгс, то стрелка на нем покажет 20 кгс. Аналогично действуют внутренние сжимающие напряжения, образующиеся в деталях при закалке. Например, если к стержню приложить растягивающие усилия, которые создадут в нем напряжения 40 кгс/мм 2 , и если в этом стержне внутренние сжимающие напр.яжения, полученные путем закалки, равны 15 кгс/мм 2 , то напряжения, растягивающие в действительности стержень, составят 25 кгс/мм 2 . Таким образом, внутренние напряжения в данном случае как бы разгружают стержень от внешнего напряжения.
Почему же именно у поверхности внутренние сжимающие напряжения оказываются особенно полезными? Во-первых, максимальные напряжения при работе детали возникают почти всегда у поверхности. Во-вторых, наиболее опасными являются растягивающие напряжения, особенно при наличии каких-либо дефектов на поверхности. Это наглядно иллюстрирует следующий пример. Возьмем школьный резиновый ластик для стирания и сделам на нем с двух сторон небольшие поперечные надрезы. Теперь, сдавливая двумя пальцами с торцовых сторон этот ластик, изогнем его по дуге. Легко можно
7. ПРИЧИНЫ ДЕФОРМАЦИИ ДЕТАЛЕЙ ПРИ ЗАКАЛКЕ
В результате закалки может произойти изменение формы и размеров деталей. Кольцо шарикоподшипника, например, может принять форму овала, ось валика может изогнуться по дуге и т. п. Кроме тога, возможно изменение объема детали, в результате чего изменяются точные размеры, приданные ей предшествовавшей механической обработкой.
Под короблением обычно понимают искажение формы изделий, а поводкой называют нарушение размеров, вызванное изменением объема. Такое толкование, конечно, несколько условно, поскольку любое изменение формы неизбежно сопровождается изменением размеров.
Рассмотрим, какие причины вызывают коробление. Оно может возникнуть при нагреве изделий. Это происходит в том случае, если они при укладке в печи прогибаются под действием собственной массы или массы других деталей, а также при неравномерном нагреве в печи, когда одна сторона детали нагревается быстрее другой. Например, если со стороны загрузочного окна печи происходит подстуживание, то поверхность детали, обращенная к окну, будет иметь более низкую температуру, и в результате произойдет выгиб ее, коробление. Из этого можно заключить, что в условиях правильного нагрева коробление можно свести к минимуму.
При закалке, когда происходят резкое охлаждение и структурные превращения в стали, избежать коробления и поводки практически невозможно. Однако можно свести их к минимальным значениям. Посмотрим, как это сделать. Главная причина коробления — неравномерность охлаждения деталей при закалке. Это вызывает неравномерность объемных изменений, что, в свою очередь, приводит к внутренним напряжениям, а они-то уже и вызывают коробление. Так происходит, например, при закалке стержня, показанного на рис. 23. Как бы быстро ни опускали его в закалочную жидкость, вначале
погрузится нижняя сторона, а затем верхняя. В момент, когда нижняя часть стержня окажется в охладителе, а верхняя будет еще над его поверхностью, произойдет объемное сжатие нижней части, и стержень изогнется, как показано на рисунке. В последующий момент, когда в охладитель погрузится и верхняя часть, она также будет стремиться уменьшиться в объеме — сжаться и выгнуть стержень в другую сторону. Однако выпрямления его уже не произойдет, так как металл в этот момент уже остыл и потому утратил прежнюю пластичность. Очевидно, коробление можно уменьшить, если погружать такой стержень в закалочную жидкость в вертикальном положении. 0
Изменение размеров деталей, вызванное структурными превращениями, по своей величине сравнительно небольшое. Оно зависит от содержания углерода в стали. Повышение содержания углерода на 0,1% вызывает увеличение объема при сквозной закалке на мартенсит всего на 0,1%. Значит, при закалке стали У10, содержащей 1% С, объем увеличится на 1%. Тем не менее при изготовлении точных изделий (калибров, мерных плиток) и такое малое изменение размеров недопустимо. В этих случаях иногда применяют бездеформационную закалку. Такое название, конечно, условное, поскольку полностью избежать деформации практически невозможно. Можно лишь свести ее к желаемому минимуму.
Рис. 23. Изгиб стержня при закалке
Сущность бездеформационной закалки заключается в следующем. Деталь подвергается полной механической обработке на точные размеры до закалки, когда сталь
Рис. 24. Изменение формы под действием термических напряжений
имеет перлитную структуру. При нагреве под закалку перлит превратится в аустенит. Если бы после закалки удалось полностью сохранить аустенитную структуру, то объем детали стал бы меньше исходного, который был при перлитной структуре. Если же при закалке аустенит полностью превратится в мартенсит, то объем станет больше исходного. Очевидно, если закалку произвести так, чтобы получить количество мартенсита и остаточного аустенита в определенном соотношении, то объем детали, а значит и ее размеры, не будут изменяться. Правда, получить требуемое количество остаточного аустенита в углеродистой стали трудно. Так, например, в стали У13 его должно быть 60%, а в стали У8 — 35%, что вообще недостижимо. Зато в легированных сталях, например марки ХГ, это вполне осуществимо. Регулирование количества остаточного аустенита достигается изменением температуры закалки и скорости охлаждения.
Несмотря на то, что при закалке на мартенсит объем увеличивается, это не означает, что все размеры детали возрастают. Так, при закалке цилиндра большой высоты диаметр, особенно в средней части, уменьшается, а высота увеличивается; при закалке цилиндров, у которых высота меньше диаметра,— наоборот, уменьшается высота, но увеличивается диаметр; полосы и листы увеличиваются по ширине, а по длине иногда уменьшаются; кольца увеличиваются по ширине и толщине, а по Диаметру — уменьшаются.
Термические напряжения стремятся так изменить Форму изделия, чтобы она приближалась к форме шара.
Например, в детали в виде куба в результате термических напряжений грани становятся выпуклыми (рис. 24,а), цилиндр сокращается по длине и увеличивается по диаметру (рис. 24,6). В результате общая картина деформаций настолько усложняется, что заранее предвидеть все возможные изменения размеров детали после закалки во многих случаях не представляется возможным, и вопрос решается опытным путем.
Читайте также: